
Commodity Computing Clusters
at

Goddard Space Flight Center

John E. Dorband
NASA/Goddard Space Flight Center

Greenbelt MD 20771
dorband@gsfc.nasa.gov

Josephine Palencia
Raytheon

Udaya Ranawake
Goddard Earth Sciences & Technology Center

I. Introduction

The purpose of commodity cluster computing is to
utilize large numbers of readily available computing
components for parallel computing to obtaining the greatest
amount of useful computations for the least cost. The issue
of the cost of a computational resource is key to
computational science and data processing at GSFC as it is at
most other places, the difference being that the need at GSFC
far exceeds any expectation of meeting that need. Therefore,
Goddard scientists need as much computing resources that
are available for the provided funds. This is exemplified in
the following brief history of low-cost high-performance
computing at GSFC.

The GSFC group was formed in the mid-1970’s in
response to the need for large amounts of computation for
processing LANDSAT images. It was recognized that
mainframes and mini-computers could not provide sufficient
processing power for processing this data. Even at that time
funds were limited at NASA to build such a processing
resource.

 Initially it was decided to look into using optics to
process the LANDSAT data. The idea was to process whole
images at a time rather than one image pixel at a time. It
soon became apparent that optical computing might not be
ready soon enough for LANDSAT, yet, due to the advances
in VLSI technology, electronics might be.

A shift in effort from optics to electronics resulted in
procurement of the NASA/Goodyear Massively Parallel
Processor (MPP). It was a 16,384 ALU SIMD (single-
instructions stream/multiple-data stream) computer that could
process a 128x128 section of a LANDSAT scene at a time,
not a whole image, but a good-sized portion of one. The

development cost of the MPP was only $7 million. It arrived
at GSFC in 1983 and became an invaluable resource to study
both computer architecture as well as NASA science
applications running on a parallel architecture. Throughout

the 1980’s several similar architectures became commercially
available: GAP, ASAP, ICL DAP, and Thinking Machine’s
Connection Machine to name a few. In 1990, GSFC
obtained a MasPar MP-1, which was four times as fast as the
MPP and cost $1 million. In 1992 GSFC obtained a MasPar
MP-2, which was as fast as a Cray YMP on a PPM
(piecewise parabolic method) fluid dynamics code. In 1993
in cooperation with MasPar Inc. GSFC clustered 4 MP-2’s
(cost ~$6 million) which perform faster than a 16-processor
C90 on the above-mentioned PPM code.

During this period of time, the MP-2 was exhibiting
uptimes of months if not a year or more, while users of
MIMD (multiple -instructions stream/multiple-data stream)
machines had to be satisfied with uptimes of a day or even
hours. LINUX had just shown up on the scene and had the
potential of being quite reliable due to the large number of
developers and users. Later it became apparent that large
numbers of developers could also be a disadvantage as well
as an advantage.

In 1994, a team was put together at GSFC to build a
cluster consisting only of commodity hardware (PC’s)
running LINUX, which resulted in the first Beowulf cluster
(later renamed Wiglaf). It consisted of 16 100Mhz 486DX4-
based PC’s. The PC’s were connected with 2 hub-based
Ethernet networks tied together with channel bonding
software so that the 2 networks acted like one network
running at twice the speed. This demonstration cluster
showed that one could utilize commodity hardware to build a
very cost effective, moderately fast computing platform. The
next year a 16 PC cluster, Beowulf II, Hrothgar, based on
100Mhz Pentiums was built and was about 3 times faster, but
also demonstrated a reliability comparable to the previously
mentioned MasPar MP-2. At one point it had not crashed in
9 months before someone accidentally shut off its power. At

that time impressive performance had not yet been
demonstrated. The next year (1996) a Pentium-Pro cluster at
Caltech demonstrated a sustained giga-flop on an application.

Cluster #proc #node type CPU
Ghz

Net
Ghz

RAM
(GB)

Disk
(GB)

Year Cost $

theHIVE 128 64 P Pro 0.2 0.10 28 896 1997 250K
pivot-g 32 16 P3 0.5 1.28 8 140 1999 100K
pivot-d 40 10 P3 0.5 1.28 5 90 1999 100K
topaz 32 16 P3 0.7 1.28 16 200 2000 270K
bbblue 32 16 P3 0.65 1.28 16 300 2000 270K
orka 32 16 P3 0.7 1.28 16 100 2000 160K
medusa 128 64 Athlon 1.2 2.00 64 2560 2002 220K

TABLE 1
 CT application proto-typing clusters.

This was the first time a commodity cluster had shown high
performance potential.

Up until 1997, the commodity clusters at GSFC were in
essence engineering prototypes, that is, they were built by
those who were going to use them. In spring of 1997 a
project was started to build a commodity cluster that was
intended to be used by those who had not built it, the HIVE
(highly parallel virtual environment) project. The idea was to
have workstations distributed among many offices and a
large number of compute nodes (the compute core)
concentrated in one area. The workstations would share the
compute core as though it was apart of each. Though the
original HIVE only had one workstation, many users were
able to access it from their own workstations over the
Internet. Many non-builders were able to develop parallel
scientific applications on the HIVE and one scientist, Dr.
Michael Gross, produced the first published scientific results
facilitated by the HIVE. The HIVE was also the first
commodity cluster to exceed a sustained 10 Gflop on an
algorithm. Since 1997 GSFC has had clusters built from
components from DELL, Gateway, SGI, IBM, and VALinux,
which have become the mainstay of scientific parallel
program prototyping for commodity clusters here at GSFC.

Recently the cluster, medusa, was built from 64 dual
1.2 Ghz AMD Athlons connected with 2 Ghz Myrinet. This
cluster finally embodied the intended concept of the HIVE.
Along with the 128-processor compute core, medusa has
more than a dozen workstations throughout a building at
GSFC attached to the core with 2 Ghz optical fibre Myrinet.
Several clusters are being planned and built throughout
GSFC to support missions and scientific research. Table 1
lists the CT application prototyping clusters.

II. Applications

Many applications and algorithms have been developed
on CT clusters. The following are just a few of these
applications.

A. Hierarchical Image Segmentation (HSEG) in Remotely
Sensed Multi-spectral or Hyper-spectral Imagery

Dr. James C. Tilton
Applied Information Sciences Branch
NASA/Goddard Space Flight Center
Email: James.C.Tilton.1@gsfc.nasa.gov

The process of image segmentation is highly useful in
the field of Earth remote sensing. Computing speeds can be
enhanced when an image is partitioned into sections or
regions among the nodes of a Beowulf Cluster. The regions
may consist of groupings of multi-spectral or hyper-spectral
image pixels with similar data feature values. These related
regions are then tagged with informational labels to extract
information regarding the ground cover or land use.

In his previous work with the old HIVE Cluster, Dr.
Tilton programmed a version of his HSEG algorithm using C
and PVM for parallelization. He did encounter some
processing window artifact problems that occur when
processing large images.

In the new version of HSEG running on the new HIVE2
Cluster, he is able to overcome this problem. He plans to use
the new C++/MPI version of HSEG in his NRA-funded
research project: "Knowledge Discovery and Data Mining
Based on Hierarchical Segmentation of Image Data". He will
be reporting the preliminary results from this project in a
paper he plans to present at the International Geoscience and
Remote Sensing Symposium 2002, Toronto, CA, June 24-28,

2002. The paper, co-authored with G. Marchisio, K.
Koperski and M. Datcu, is titled "Image Information Mining
Utilizing Hierarchical Segmentation."

URL: http://www.nasamedicalimaging.com/hseg
http://code935.gsfc.nasa.gov/code935/tilton

B. Parallel Matlab on Beowulf Machines

Dr. J. Anthony Gualtieri
Code 935 and Global Science and Technology
NASA/Goddard Space Flight Center

Interactive programming environments with powerful
graphical and image display capabilities, such as Matlab, are
available on single processor workstations. To extend the
capability of this tool to tackle more advanced problems, we
must learn to integrate these environments in a Beowulf
cluster.

A software system called Matlab*P (written by Parry
Husbands and Charles Isbel) combines these two approaches
to the scientific computing and offers a resolution of the
implementation challenge. Currently, Matlab*P is installed
on several clusters at GSFC for the development of remote
sensing classification codes.

The user avails herself of Matlab syntax with
polymorphism to write, for example, a two-dimensional
square random array as a = rand (4000*p); where the *p is
parsed to indicate that a is parallel variable that will distribute
itself across multiple cluster processors. Then operator
overloading transparently allows the use to invert this matrix
by writing ainv = inv(a). A client node of the cluster runs a
single copy of standard Matlab which has been extended with
Matlab functions that are coupled to dynamically loaded
packages that link Matlab on the client to the server running
on the compute nodes of the cluster. The server nodes are
running SCALAPACK on top of MPI to provide the actual
computation. To the user the full interactive capability of
Matlab is always available, including all the single processor
capability of ordinary Matlab, but now all the standard linear
algebra functions from SCALAPACK are available to
perform the computations. The user never has to deal with
any message passing additions to the standard Matlab code.

References:

Proceedings of the Third International Conference
on Vector and Parallel Processing, “The Parallel Problems
Server: A Client-Server Model for Large Scale Scientific
Computation(1998)”, Husband and Isbel

Advances in Neural Information Processing Systems 12,
“The Parallel Problem Server: An Interactive Tool for Large
Scale Machine Learning (1999),” Husband and Isbel

C. Hyper-spectral Imagery Dimension Reduction Using
Principal Component Analysis on the HIVE

Sinthop Kaewpijit
School of Computational Sciences
George Mason University
Sinthop@science.gmu.edu

Tarek El-Ghazawi
Department of Electrical and Computer Engineering
George Washington University
tarek@seas.gwu.edu

Jacqueline Le Moigne
Applied Information Science Branch
Code 935 NASA Goddard
Lemoigne@backserv.gsfc.nasa.gov

Hyper-spectral data, with observations collected at
hundreds of bands, are produced by some of the operational
NASA instruments. These remote sensing technology
developments will facilitate many new application of Earth
and Space Science. On the other hand, the increased data
volumes prompt the need for much faster processing and
methods for data reduction. Dimension Reduction is a
spectral transformation, aimed at concentrating the vital
information and discarding redundant data. One such
transformation, used widely in remote sensing, is Principal
Component Analysis (PCA). Parallel algorithms have been
developed for PCA, along with implementations and
performance measurements on the HIVE Cluster. An
innovative technique via wavelet decomposition is
introduced as a new choice for reducing dimensionality of
hyper-spectral data.

Reference: Science Data Processing Workshop 2002
URL: http://that.gsfc.nasa.gov/gss/workshop2002

D. Parallel Adaptive Mesh Refinement (PARAMESH)

Dr. Peter MacNeice
Code 935 HPCC
NASA Goddard Space Flight Center
E-Mail: macneice@alfven.gsfc.nasa.gov

Dr. Kevin Olson
University of Chicago
NASA/Goddard Space Flight Center
Email: olson@bohr.gsfc.nasa.gov

Paramesh is a software package used primarily for the
automatic parallel adaptive mesh refinement (AMR). It
consists of Fortran 90 subroutines with MPI calls designed to
extend an existing serial code which uses a logically
Cartesian-structured mesh into a parallel version with block-
structured adaptive mesh refinement. The package builds a
hierarchy of sub-grids to cover the computational domain,
with varying spatial resolution to satisfy the demands of the
application. These sub-grid blocks form the nodes of a tree
data-structure (quad-tree in 2D or oct-tree in 3D); each grid
block has a logically Cartesian mesh.

Paramesh maintains the mesh data structure, distributes
them to processors for load balancing, and handles all
communications. The users can then construct their code to
call a subset of the high-level Paramesh subroutines. The
package supports 1, 2, and 3D models.

URL:
http://sdcd.gsfc.nasa.gov/RIB/repositories/inhouse_gsfc/User
s_manual/amr.html

E. Applications developed with Paramesh:

1) FLASH, A Parallel, Adaptive Code for Astrophysics

Kevin Olson, Bruce Fryxell, Frank Timmes, Paul
Ricker, Mike Zingale, Jonathan Dursi, Alan Calder,
Henry Tufo, Robert Rosner, and Peter MacNeice

FLASH is a general-purpose Astrophysics code that
uses PARAMESH. It currently includes modules for
compressible fluid dynamics using PPM (Prometheus,
Fryxell and Muller), gamma law equation of state, stellar
equation of state, reactive flow with a multi-species nuclear
burning network, nuclear energy generation, constant
gravitational field and other forcing terms and AMR and
parallelism using Paramesh.

The current scientific work being done with FLASH
includes XRAY bursts in 2-3D (img013.gif), novae and
supernovae studies, detonation front instabilities
(img014.gif), crushed turbulence, and burning front-vortex
interaction.

Future plans for the FLASH code include development
of modules for self-gravity using the multi-grid algorithm,
implicit thermal diffusion, radiation, different fluid solvers
(e.g., incompressible), MHD, AMR using other packages
(e.g., SAMRAI) and time adaptivity.

URL: http://www.csar.uiuc.edu/~hoefling/workshop-
may00/Slides/KevinOlson/chicago/sld001.htm

2) AMRMHD3D: A 3-D Flux-Corrected Transport Code
with Adaptive Mesh Refinement for Ideal, Compressible
Magnetohydrodynamics

AMRMHD3D is a new, three-dimensional,
magnetohydrodynamics model developed on the Cray T3E
computer system. It extends the FCTMHD3D model for
fixed grids to adaptively refined grids constructed by the
parallel meshing package PARAMESH. The equations are
solved conservatively in a finite-volume representation with
explicit two-step Runge-Kutta to advance the variables.

The multiple subroutine package of AMRMHD3D is
written in Fortran 90 and consists of 79 Fortran source files
and 27 header files in two groups: the FCTMHD3D
application group (22 sources, 19 headers) and the
PARAMESH AMR group (57 sources, 8 headers).

URL:
http://www.lcp.nrl.navy.mil/hpcc-ess/amrmhd3d.10.html
AMRMHD3D source code:
ftp://lcp.nrl.navy.mil:/pub/hpcc-ess/amrmhd3d.t3e.tar.Z.

3) ATHENA: A 3-D MHD Code with Adaptive Mesh
Refinement for Modeling Global Magnetosphere and
Accreting Magnetized Stars

Dr. Daniel Spicer
Code 930 Senior Scientist
NASA Goddard Space Flight Center

ATHENA is a new, three-dimensional 3D
magnetohydrodynamics (MHD) code that uses dynamic
adaptive mesh refinement. The equations are used in a finite
volume representation using Colella's High Order Godunov
Corner Transport Upwind scheme, together with a staggered
mesh scheme to insure the magnetic fields remain divergence
free. The AMR package used is the PARAMESH package
developed by Peter MacNeice and Kevin Olson. Presently it
is used to model the global magnetosphere and accreting
magnetized stars.

4) ATHENA/AMR

Michael L. Rilee
Maharaj K. Bhat

High Performance Computing
NASA Goddard Space Flight Center
mbhat@hannibal.gsfc.nasa.gov
mrilee@hannibal.gsfc.nasa.gov

 In this work, the interaction of solar flux with earth's
magnetic field is studied, employing Athena/Paramesh codes.
While Athena provides the numerical algorithms, Paramesh
software divides the computational domain into large
numbers of blocks, distributes these blocks onto processors
and facilitates runtime refinement/derefinement. Run time
flow visualization reveals evolving physics and monitors
progress of simulation. Athena/Paramesh computational
environment is ideal for distributed computing that is
provided by a cluster like HIVE II.

5) Numerical Relativistic Astrophysics Group

Dr. Joan Centrella
Relativistic Astrophysics Group
Code 661 LHEA
NASA/Goddard Space Flight Center
jcentrel@milkyway.gsfc.nasa.gov

A core objective of the numerical relativistic
astrophysics group is to develop and apply codes for solving
Einstein's gravitational field equations using finite difference
simulations with adaptive mesh refinement (AMR). These
tools will be used to model astrophysical sources of
gravitational waves as required for the analysis of data
produced by the planned Laser Interferometer Space Antenna
(LISA).

The group is also involved in the Lazarus project, an
effort producing approximate models for gravitational waves
binary black hole systems using a combined approach
involving numerical simulation together with perturbation
theory techniques in the regimes where they are applicable.

F. Space Interferometry Mission on Dynamics of Galaxies
(SIMDOG)

Dr. Edward Shaya
Institute of Science and Technology at Raytheon
Code 630.1 NASA/Goddard Space Flight Center
Email: shaya@mail630.gsfc.nasa.gov

As part of the SIM Key Project on Dynamics of
Galaxies (SIMDOG), we will be calculating the trajectories
of nearby galaxies given the present positions and velocities.
This is somewhat like running an N-body gravitational code,
however, because we are also constrained by the fact the
peculiar motions were zero at t=0, it is more similar to a
boundary valued differential equation problem. The actual
method is called numerical action, and it relies on classical
mechanics. In action theorems, one solves for paths for which
the integrals of the actions over all time are extrema. This
typically requires solving for the minima of about 300
parameters per galaxy, and we usually calculate paths for
several thousand galaxies. Since the potential field changes
as the paths are varied, it is a very challenging numerical
problem. We typically run grids of nodes with each node
solving for orbits in universes of different cosmological
parameters. The problem thus parallelizes very efficiently
and easily.

URL: http://sim.jpl.nasa.gov/ao_support/ao_abstracts.html

G. Using a Beowulf Cluster in Land Information System
(LIS)

Dr. Paul Houser
Dr. Christa Peters-Lidard
Hydrological Department
NASA Goddard Space Flight Center
Paul.R.Houser.1@gsfc.nasa.gov
Christa.D.Peters-Lidard.1@gsfc.nasa.gov

The Land Information System (LIS) will be a hardware
transparent integrated software and database system, focused
on a high-resolution (1km) global land data assimilation with
several independent community land surface models, land
surface data assimilation technologies, and integrated
database operations for data management. The eventual
throughput and storage requirements of the LIS
(approximately 1TB per day simulated) exceed any available
or planned NASA computing platform, and hence a custom
194-node Beowulf cluster is being constructed to support the
work. The relatively weak horizontal physical coupling of
global land surface processes works well with a large-scale
distributed memory parallel processing software design.

The custom Linux Beowulf cluster at NASA/GSFC will
consist of one "queen" or control node and at least 192
"compute" nodes connected by at least fast Ethernet. The
queen node will control the data staging and model
execution, and the compute node segments will be partitioned
into input data preprocessing/interpolation, model execution,
and output data post-processing and gathering. The queen
node will consist of dual 1.5Ghz processors, 4 GB RAM, and
2 TB storage or better while the compute nodes will consist
of single 1.2Ghz processors, 512 MB RAM, and 80 GB
storage or better. We anticipate gigabit connections between
the compute node switches and the queen nodes as well as
between the queen nodes and the GSFC network.

URL: http://lis.gsfc.nasa.gov/

H. Scientific Visualization Studio

Randall Jones
Scientific Visualization Studio
NASA/Goddard Space Flight Center

The SVS (Scientific Visualization Studio) utilizes
various scientific visualization tools to provide products and
services to scientific communities. We have a wealth of
experience working with high-performance, professional
graphics computers which utilize advanced, hardware-based
graphics rendering. The SVS seems to be an ideal place to
introduce a new generation of interactive hardware graphics
tools.

In the last few years, commodity, PC-based graphics
accelerators have made great advances in performance while
maintaining their commodity pricing. It has been shown and
proven that a significant increase in graphics performance
can be achieved by breaking the rendering work into smaller
components and distributing these to many PC computers
(nodes), each running a hardware graphics accelerator. The
graphics accelerators on the individual nodes compute a
portion of the scene, which is then assembled to produce an
output image. There are two common models of parallel
hardware rendering we intend to explore. The first method
utilizes multiple displays, each attached to its own graphics
accelerator and outputting a portion or "tile" of the total
display image. The final result is high (higher than a single
display) resolution image composed of tiled displays.
Second is a parallel rendering approach where a portion of

the scene to be rendered is sent to each node, computed using
the graphics accelerator and then read back into a "master"
node to be displayed in a single graphics window. This
parallel rendering approach has the advantage of graphics
performance increases while maintaining the familiar use and
interaction of a local window.

A small cluster was specified to provide an adequate
test bed for learning and experimenting with current
technologies in the area of hardware-assisted, cluster-based
parallel rendering. There are a few software packages that
one can started with. A package called WireGL is a parallel
OpenGL library and framework for running existing OpenGL
graphics applications in parallel without modification to the
application. There is also a follow-on project to WireGL,
based on the WireGL code base called Chromium provides a
more general and more customizable framework. OpenGL-
based image viewer can be used to view high-resolution
imagery continuously on a large tiled display.

References

S. Molnar et al., "A Sorting Classification of Parallel
Rendering," IEEE Computer Graphics and Applications, vol.
14, no. 4, July 1994, pp. 23-32.

H. Igehy, G. Stoll, P. Hanrahan, "The Design of a Parallel
Graphics Interface," ACM Computer Graphics Proceedings,
1998, pp. 141-150.

G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, P.
Hanrahan, "WireGL: A Scalable Graphics System for
Clusters," ACM Computer Graphics Proceedings, 2001, pp.
129-140.

G. Humphreys, R. Frank, S. Ahern, "Specification for
Stanford/DOE Cluster-Rendering Infrastructure,"
WireGL/Chromium Project documentation.

G. Humphreys, P. Hanrahan, "A distributed graphics system
for large tiled displays," IEEE Visualization Proceedings,
1999, pp. 215-227.

B Wylie, C. Pavlakos, V. Lewis, K. Moreland, "Scalable
Rendering on PC Clusters," IEEE Computer Graphics and
Applications, vol. 21, no. 4, July/August 2001, pp. 62-70.

III. Benchmarks

We evaluated the performance of the communication
network of the PC cluster and also its performance on the
class A NAS parallel benchmarks.

The communication performance of the network was
measured using the MPI communication libraries for the
Ethernet and the Myrinet. These include the latency, the
bandwidth, and the MPI group communication functions
such as reduce, broadcast, and barrier.

The round-trip time between two nodes was measured
using the MPI_Send and MPI_Recv functions for various
message lengths. For small messages, the fixed overhead and
latency dominate the roundtrip time. For large messages, the
roundtrip time increases linearly with message size. Half the
roundtrip time for short messages is a measure of the latency
of the system. For MPICH under Ethernet, the latency was
about 0.1 ms. For Myrinet, it was about 0.01 ms. The
bandwidth between two nodes is obtained by dividing the
message length by half the roundtrip time. For the Ethernet
and the Myrinet the bandwidths were 94 Mbits/sec and 1,266
MBits/sec respectively. Therefore, the bandwidth under

Myrinet is about 10 times the bandwidth under Ethernet. It
was noticed that the MPI group communication functions
also showed the same performance ratio for various message
sizes under the two networks.

The NAS parallel benchmark consists of six parallel
kernels and three simulated application benchmarks. These
are:

Elegantly Parallel EP
Fast Fourier Transform FT
LU Decomposition LU
Multi-grid MG
Conjugate Gradient CG
Integer Sort IS

Here, we consider the performance of the six class A kernel
benchmarks. The programs were compiled using the g77
compiler and linked with the MPICH libraries for the
Ethernet and Myrinet. Table 2 lists the execution times for
the 64-processor case. We notice that on 64 processors, the
PC cluster under Myrinet performs better than the CRAY
T3e 900 on all the computational kernels of the NAS
benchmarks.

PC(ether) PC(myri) T3e

EP 2.78 2.82 3.2
FT 1.1 5.59 2.9
LU 11.42 20.89 27.6
MG 0.42 0.97 0.8
CG 0.75 2.93 1.3
IS 0.31 -- 1.1

TABLE 2. NAS class A benchmark times in seconds.

References:

William Gropp, Ewing Lusk, Nathan Doss and Anthony
Skjellum, “A High-Performance, Portable Implementation of
the MPI Message Passing Interface Standard", available at:
http://www.mcs.anl.gov/mpi/mpich/

"NAS Parallel Benchmarks" available on the WWW at:
http://www.nas.nasa.gov/NAS/NPB/

"NAS Parallel Benchmarks 2 Detailed Results" available on
the WWW at:
http://www.nas.nasa.gov/Software/NPB/NPB2Results/

IV. Conclusion

By necessity, the overwhelming computational needs of
earth and space scientists have driven GSFC to be one of the
leaders in the application of low cost high-performance
computing.

